Acute aflatoxin exposure & Impacts: The Kenyan example and response towards outbreaks

David Githanga & Abigael Awuor

Kenya Pediatrics Association of Kenya & Centers of

Disease Control and Prevention, Kenya

PACA Meeting March 23, 2016

Aflatoxicosis in Kenya

Makueni and Kitui Counties, Kenya

Year	Region	Cases	Deaths	CFR
1981	Makueni/Kitui	20	12	60
2004	Makueni/Kitui	317	125	39
2005	Makueni/Kitui	75	35	49
2006	Makueni/Kitui	51	21	41
2007	Makueni/Kitui	34	16	47
2014	Oloitoktok, Kajiado	27	10	40

Aflatoxicosis in Kenya

□ Aflatoxin exposure

- Chronic exposure is endemic
- Acute exposure (i.e., aflatoxicosis) occurs almost yearly

Aflatoxicosis

Aflatoxin

- Most important for toxicity & widespread
- ☐ Unavoidable contaminant: cereals, rice, cassava, nuts, chillies, spices, juices, butter, eggs, milk, bread, meat
- ☐ Lopophilic therefore crosses placental barrier
- □ 4 main aflatoxins: B1, B2, G1, G2 and milk toxin
 M1
- □B1: most toxic, abundant & potent carcinogen

Aflatoxin

 Health effect; immunomodulation growth retardation/stunting hepatocellular carcinoma Death

CHILDREN ARE NOT LITTLE ADULTS

Giotto, National Gallery, Washington DC

Raphael, National Gallery of Art, Washington, DC

CHILDREN ARE NOT LITTLE ADULTS

- Different and unique exposures
- 2. Dynamic developmental physiology
- 3. Longer life expectancy
- 4. Politically powerless

How Children are Different

Short Staturecloser to ground

Increased food intake and metabolic rate

Altered excretion

Long "shelf life"

Aflatoxicosis

- Aflatoxicosis = acute poisoning caused by aflatoxins
 - Jaundice, vomiting, abdominal pain, fever, oedema

MYCOTOXINS

IMMUNOSUPPRESSION

- Dietary exposure

Chronic ingestion of aflatoxin
 B₁ and Tricothecenes have potent immunosuppressive effect and are carcinogenic

FAO, 1991

Immunotoxicity in humans

- ☐ Threshold dose unknown
- ☐ 2 main studies in West Africa (Turner PC 2003; Jiang 2005)
- "limited, inconsistent and uncertain"

Aflatoxin & immunomodulation

- ☐ In vivo & in vitro studies of animals & human cells (Gallikeev 1968, Pier, 1970)
- Modulate cytokine production (Oswald 2005, Bondy 2000)
- ☐ Decrease T or B lymphocyte activity
- ☐ Impair macrophage/neutrophil functions,
- ☐ Suppress NK cells-mediated cytolysis
- □ Depress immunity to vaccinations (Yi Jiang 2008)

□ Aflatoxin-albumin adduct biomarker have been associated with a decreased potential for antibody responses, decreased immune cytotoxic activity, and decreased numbers of regulatory T cells, which may result in hyperactivation of the immune system (Jiang Y et al. Clin Dev Im- munol 2008;

Statement of problem

☐ High morbidity and mortality in the paediatric population due to vaccine-preventable illnesses continues despite varied and exerted national efforts to address this.

Figure 3: Distribution of Causes of Death among Under Fives in Kenya Distribution of causes of deaths among under fives in kenya, 2000-2003 Neonalal causes 24% HIV/AIDS Distritogal diseases. 20% messies. malaria m pneumonia 15% injuries 14% ■ Others 16% Source: WHO, Kenya Mortality Country Fact Sheet 2006

Doing nothing

Justification of an outbreak response

- ☐ The Disease Surveillance and Response Unit in the Ministry of Health receives reports of suspected cases
- □ Cases reported during the high risk season (April – June) based on previous outbreaks in Kenya.
- ☐ Emergency meeting is convened at the DSRU with partners and FELTP residents
- ☐ Protocol is reviewed

Objectives of response

- ☐ To determine the extent of aflatoxicosis outbreak
- ☐ To confirm the existence of an outbreak of aflatoxicosis
- ☐ To characterize the aflatoxicosis cases
- □ To establish factors associated with aflatoxicosis poisoning.
- □ To determine levels of aflatoxin in case household food samples
- □ To provide health education on ways of reducing aflatoxin exposure

Methods- Data Collection

- 1. Records Review
- Review of the line list of suspected cases reported through the hospital-based surveillance
- Review of inpatient and outpatient registers in selected health facilities to establish the number of acute jaundice cases using a data abstraction form
- 2. Case Patient/Proxy Interviews
- Hospitalized cases using a structured questionnaire.
- Collect a serum sample from the suspected case patient
- For fatal cases, a proxy is interviewed

Data collection (cont)

- 3. Active Case Search
- Visit suspected case patients' villages and households and conduct interviews with each family member.
- Administer the household maize questionnaire to the consenting head of household and collect a maize/flour sample for aflatoxin testing.
- Team conducts health education on ways to prevent aflatoxin exposure.

Diagnosis and analysis

- ☐ Diagnosis is made on the basis of clinical presentation, specifically clinical suspicion.
- ☐ Steps taken to assist with diagnosis:
- 1) Testing food being consumed by the case-patient for aflatoxin.
- 2) Ruling out and testing for other causes of acute hepatitis.
- 3) Serum levels of aflatoxin
- Analytical method:-

high performance liquid chromatography—electrospray tandem mass spectrometry (HPLC-ESI-MS/MS)

Aflatoxin Exposure Put into Perspective

	Levels (pg/mg) albumin	% Detectable
Aflatoxicosis outbreak in Kenya	120-1200	
Kenya Aflatoxin Sero-Survey	<lod 211<="" td="" –=""><td>78</td></lod>	78
(2007)	(HPLC-ESI-MS/MS)	
Uganda Aflatoxin Sero- Survey(2010)	<lod- 173.8<="" td=""><td>72</td></lod->	72
	(HPLC-ESI-MS/MS)	
United States National Health and Nutrition Examination Survey (NHANES) 1999- (2000 survey (Schleicher et al., 2013)		1
,		

Challenges

- No local lab capacity to test for aflatoxin in serum
- ☐ Threshold of aflatoxin levels where you would start to see health effects are unknown
- ☐ Coordination cross-cutting/ Multi-sectoral
- ☐ Replacement withdrawal of contaminated food
- □ Lack of affordable Rapid diagnostic kits at village/subcounty level for early detection of aflatoxin contamination and for surveillance.

Recommendations – Outbreak response

- ☐ Regional reference lab should be established
- □ Develop/strengthening a monitoring system (in foods and of jaundice Early Warning System)
- ☐ Enhance multi-sectoral collaboration through the Outbreak Control Team / Emergency Operating Center
- □ Public Private Partnerships
- □ Resources are needed to quantify the burden of disease and associated health effects

Thank You!

Asanteni sana

